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Abstract 

The medical field has historically resisted uncertainty, often delaying the 

integration of new scientific evidence into clinical practice—sometimes by nearly 

two decades. This inertia reflects deep-rooted cultural and epistemological 

barriers that also impede the adoption of innovations such as Artificial Intelligence 

(AI). Yet, the call for more rigorous decision-making in medicine is not new. In the 

18th century, Pierre-Simon Laplace emphasized the value of probability theory in 

clinical reasoning, a view later echoed by William Osler, who famously described 

medicine as “the science of uncertainty and the art of probability.” These early 

insights gained traction through the work of Sir Austin Bradford Hill and Archibald 

Cochrane, whose contributions laid the groundwork for Evidence-Based Practice 

(EBP). In the 1990s, Gordon Guyatt formally introduced Evidence-Based 

Medicine (EBM), advocating for clinical decisions grounded in empirical data, 

professional expertise, and patient values. In this evolving landscape, basic 

statistical literacy is no longer sufficient. In this context, cultivating probabilistic 

reasoning and statistical thinking has become essential to support ethically sound 

and evidence-aligned decisions to guide a meaningful transformation in both 

clinical training and practice.  

Keywords: Evidence-Based Medicine, Artificial Intelligence, Medical Education, 

Clinical Decision-Making, Probabilistic Reasoning. 
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Imagine a future where digital assistants analyze data in real time to 

support clinical decisions, and intelligent robots roam hospitals, optimizing 

workflows and improving care. Artificial Intelligence (AI) is no longer a concept 

confined to science fiction, but an advancing reality with the potential to 

profoundly transform the practice of medicine. However, despite this promising 

outlook, significant cultural and operational barriers still impede the full 

incorporation of these technologies into clinical practice. For example, it is 

estimated that it takes almost two decades for new scientific evidence to be 

integrated into medical routines [1]. This time lag largely reflects medicine’s 

historical resistance to recognizing and managing uncertainties—whether 

diagnostic, prognostic, or therapeutic—which affects not only clinical decision-

making but also the doctor–patient relationship and interprofessional 

collaboration. Discomfort with ambiguity can lead to an overreliance on apparent 

certainties, reinforcing a dichotomous view of reality that reduces complex clinical 

scenarios to simplistic black-and-white terms, neglecting the nuanced spectrum 

of gray. 

However, cultural resistance to accepting uncertainty largely reflects the 

human brain’s limited ability to engage in explicit probabilistic reasoning. 

Meanwhile, biological reality is inherently complex and characterized by high 

interindividual variability, especially in the early stages of diseases. In this context, 

probabilistic models [Y ~ p(y|θ)]* which incorporate and quantify uncertainty 

become essential tools, contrasting with the deterministic view [y = f(x)]†, which 

assumes fixed and fully predictable relationships between variables. Aligning 

probabilistic approaches at both the clinical and statistical levels is a decisive step 

towards driving the evolution of health technologies and improving responsible 

information communication. This alignment strengthens the foundation of clinical 

decisions and contributes to better informed public health interventions adjusted 

to the complexities of the real world.  

This cultural resistance to uncertainty in medical practice has deep 

historical roots. As early as the 18th century, Pierre-Simon Laplace and other 

                                                      
* Read the expression Y ~ p(y|θ) as “Real data, represented by Y, generated from a probability distribution 
p(y|θ), whose shape depends on the unknown parameter θ. 
† Note that for each value of x, exactly one corresponding value of y is generated.  
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pioneers recognized the role of probability in improving conjectural sciences—a 

concept that would gradually influence medicine [2]. However, this perspective 

faced strong resistance and was slowly adopted in clinical settings. In the late 

19th and early 20th centuries, William Osler emphasized that medicine is “the 

science of uncertainties and the art of probabilities” [3], but it took decades for 

this view to inspire tangible changes in clinical routines. It was only throughout 

the 20th century, with the contributions of researchers such as Sir Austin Bradford 

Hill [4] and Archibald Cochrane [5], that probability and statistical methods were 

more systematically integrated, laying the foundation for evidence-based practice 

(EBP). 

The formalization of Evidence-Based Medicine (EBM) occurred in the 

1990s, with Gordon Guyatt’s seminal article “Evidence-Based Medicine” (1991) 

[6], in which he highlighted the need for clinical decisions to be grounded in robust 

scientific evidence, integrating clinical expertise, empirical data, and patient 

values. Since then, EBM has become a cornerstone of modern medical practice, 

fostering more informed, personalized, and effective care. 

This integration between scientific knowledge and clinical decision-making 

has continued to evolve, propelled by the emergence of new technologies. 

Artificial Intelligence (AI), particularly through Machine Learning and Deep 

Learning techniques, enables advanced analytical tools to uncover the 

mechanisms underlying health and disease. If traditional statistical methods 

helped incorporate uncertainty into diagnosis and prognosis, AI and big data 

analytics now offer opportunities to refine these uncertainties, making clinical 

decisions faster and more precise. However, as medicine’s historical trajectory 

reminds us, technological advancements must be accompanied by rigorous 

critical appraisal and a strong commitment to ethical and scientific standards to 

ensure that innovation genuinely enhances care quality and safety. 

In this context, bridging the gap between theory and practice remains a 

central challenge—especially in training health professionals. Although EBM is 

widely discussed in academic curricula, institutional programs, and scientific 

forums, a significant gap persists between these principles and the realities of 

clinical care. This disconnection undermines the quality of care and underscores 

the urgency of translating scientific evidence into practical settings. To that end, 
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strategic investments in education and continuous professional development are 

essential. 

However, the traditional approach to statistical literacy, often limited to 

interpreting numerical data and using analytical tools, has proven insufficient in 

preparing clinicians for evidence-based decision-making. The teaching of 

statistical concepts—such as measures of central tendency, confidence intervals, 

and p-values—is frequently included in medical curricula. However, their 

interpretation and application in clinical practice are often overlooked, 

especially in institutions where statistics is not contextually integrated into 

medical decision-making. Thus, it is essential to foster probabilistic reasoning 

and statistical thinking so that decisions are truly guided by evidence. These skills 

are fundamental to critically integrating scientific findings into clinical reasoning, 

while also honoring the biological complexity and individual variability of each 

patient. 

In the management of psychiatric disorders, for instance, the decision to 

prescribe an antidepressant can be based on evidence that models treatment 

effectiveness as a conditional probability—that is, the likelihood of a patient 

exhibiting a significant therapeutic response given factors such as family history, 

psychiatric comorbidities, and genetic biomarkers. This probability, expressed as 

P (therapeutic response | patient profile), allows for the integration of multiple 

factors influencing treatment efficacy. Patients with major depressive disorder 

and a history of treatment resistance, for example, may exhibit differential 

responses to specific selective serotonin reuptake inhibitors (SSRIs), particularly 

when comorbidities such as generalized anxiety disorder or undiagnosed bipolar 

disorder are present. In this context, Bayes' theorem enables the continuous 

updating of these estimates as new clinical information and biomarkers become 

available, progressively refining therapeutic decision-making. Formally, this 

relationship can be expressed as: 

 

                             P (therapeutic response | patient profile) =   

𝑃(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝𝑟𝑜𝑓𝑖𝑙𝑒| 𝑡ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 )  ×  𝑃(𝑡ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

𝑃(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝𝑟𝑜𝑓𝑖𝑙𝑒)
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Complementary to the Bayesian approach, the Likelihood Ratio (LR+/-) 

plays a central role in individualizing clinical reasoning. In diagnostic testing, it 

enables the pre-test probability of a patient having a disease to be updated by 

incorporating the test’s sensitivity and specificity, yielding a more accurate post-

test probability. This allows new laboratory or imaging findings to be quantitatively 

integrated into clinical decisions, enhancing diagnostic precision. The approach 

illustrates how probabilistic reasoning moves beyond population-level inferences, 

tailoring decisions to the specific features of each patient. 

On the other hand, advanced statistical thinking is essential for the critical 

appraisal of scientific evidence and its application to evidence-based practice 

(EBP) (Figure 1). Consider, for instance, a hypothetical study reporting that a new 

antidepressant is more effective than standard treatment for major depressive 

disorder, with a statistically significant result of P = 0.01. At first glance, this might 

be interpreted as evidence against the null hypothesis (H₀), suggesting the drug’s 

efficacy. However, such interpretation requires caution, as a P-value < α does not 

provide information about the magnitude of the effect or confirm its clinical 

relevance. 

 

                                                     

Figure 1. Diagram of the hierarchy of essential skills for evidence-based decision 

making. The three competence levels are interdependent and complement each other in 

clinical decision making.  
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In this sense, a more robust analysis requires formulating questions that 

guide the critical interpretation of results, such as: What is the magnitude of the 

observed effect, and is it clinically relevant? Do the confidence interval limits 

include effects of clinical importance? Are the findings consistent with previous 

studies? When assessing individual benefits, should absolute or relative 

measures be prioritized? Are the results applicable to patients with comorbidities 

or specific genetic characteristics, or are there limitations to their generalizability? 

These reflections are essential to ensure that clinical decisions are based on a 

contextualized assessment, respecting biological complexity and individual 

variability. 

In addition to the critical appraisal of statistical outcomes, a key component 

of statistical thinking is evaluating the reliability of scientific evidence. This is 

particularly important in light of the high proportion of non-replicable findings in 

the literature, often due to methodological flaws or publication biases. In his 

influential article “Why Most Published Research Findings Are False” [7], John 

Ioannidis demonstrated that a significant proportion of studies in the medical field 

report irreproducible results, influenced by factors such as small sample sizes, 

publication bias, and indiscriminate use of multiple statistical comparisons. 

Moreover, questionable practices like p-hacking (repeated testing until statistical 

significance is achieved) and HARKing (Hypothesizing After the Results Are 

Known) compromise scientific credibility and hinder the translation of findings into 

clinical settings. These methodological issues not only weaken the evidentiary 

foundation of research but also affect the reliability of AI – based predictive 

models, which—despite their computational power—require rigorous validation 

to ensure clinical relevance. 

The application of AI and predictive algorithms in healthcare raises 

technical and ethical challenges, particularly regarding the quality, integrity, and 

representativeness of the training data. Machine Learning models in biomedical 

contexts, including multi-omics approaches (integrating genomic, transcriptomic, 

proteomic, and metabolomic data) [8], have great potential to uncover complex 

biological patterns and improve diagnostic accuracy. However, poor data 

representativeness can compromise model generalizability, reducing 
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performance when applied to populations or scenarios that differ from the training 

set. 

Beyond data representativeness, another major challenge in applying AI 

to medicine involves discrepancies between training data and real-world clinical 

data. In this context, two critical issues are covariate shift and batch effects. 

Covariate shift occurs when the distribution of predictive variables in the training 

dataset differs from that in real-world clinical data, impairing model accuracy. This 

phenomenon is particularly relevant in clinical studies, where population, 

environmental, and temporal variations may alter patient characteristics and 

reduce prediction reliability. Such discrepancies compromise a model’s ability to 

generalize across diverse clinical contexts, limiting practical applicability [9]. In 

addition to covariate shift, batch effects are a common issue in biomedical 

modeling. These non-biological variations stem from methodological 

inconsistencies between sample batches and can distort algorithmic pattern 

recognition. Batch effects are especially problematic in genetic and biomedical 

studies, where subtle differences in lab conditions may generate significant 

analytical discrepancies [10].  

To mitigate these limitations, strategies such as statistical 

recalibration, data normalization, and tailored approaches for different 

types of omics data should be adopted [11]. These approaches help models 

adapt to real-world conditions, improving their robustness and clinical 

applicability. Additionally, it is critical to account for overfitting and data quality, as 

both directly influence model generalizability. The use of flawed datasets or 

overtrained models can result in overfitting—a common issue in both 

Machine Learning and Deep Learning. Overfitting occurs when a model 

memorizes spurious patterns from the training data, failing to generalize to new, 

unseen cases. Consequently, such models may perform well within the training 

context but break down in real clinical scenarios, producing unstable predictions 

and undermining their practical use. These impacts have been documented in 

multiple real-world applications. 

An emblematic example of these challenges was highlighted in a recent 

systematic review [12], which emphasized the lack of representativeness in 

datasets used to train machine learning algorithms for healthcare prediction. 
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While these algorithms are effective at identifying latent patterns within available 

data, their clinical applicability is jeopardized when training data are biased or 

insufficiently diverse. This limitation is especially critical in primary and secondary 

prevention settings, where data collection biases—such as selection bias (when 

the sample does not reflect the target population) and spectrum bias (when cases 

do not reflect the actual clinical diversity)—can perpetuate inequalities in 

diagnosis and treatment. 

Indeed, as demonstrated by Obermeyer et al. [13], a widely used AI 

algorithm in the U.S. healthcare system exhibited systemic racial bias when 

healthcare spending was used as a proxy for disease severity. This choice 

reduced the number of Black patients identified as needing additional care by 

over 50%, underscoring how flaws in data curation and processing can 

compromise equity and fairness in clinical decision-making. This case reinforces 

the importance of critically designing and validating predictive algorithms to 

ensure that their outputs reflect the complexity and diversity of the populations 

they aim to serve. 

Therefore, moving forward requires ongoing training of physicians and 

healthcare professionals to rigorously and thoughtfully interpret the many 

variables involved in medical care. This effort goes beyond mastering the best 

available evidence; it entails embedding probabilistic reasoning and statistical 

thinking into clinical routines. Moreover, the adoption of new technologies must 

be inclusive, transparent, and responsible—not only enhancing diagnostic, 

prognostic, and therapeutic precision but also reducing health disparities and 

promoting more equitable access to care. 

In this evolving landscape, balancing the transformative potential of 

technological innovations with the ethical, scientific, and humanistic principles 

that guide medical practice is essential. The growing role of AI in healthcare must 

be accompanied by strategic measures that ensure its ethical and equitable 

implementation, avoiding adverse effects that could undermine its effectiveness 

and acceptance. 

One of the most pressing challenges is data governance, particularly 

regarding the collection, storage, and use of medical information to train 
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predictive models. The quality and representativeness of these data 

directly impact algorithmic accuracy, making it crucial to establish rigorous 

protocols that guarantee accessibility without compromising security and 

privacy. Regulatory frameworks such as the GDPR (General Data Protection 

Regulation) and HIPAA (Health Insurance Portability and Accountability Act) must 

be observed to protect sensitive information and ensure that clinical data are used 

ethically and transparently. 

Beyond privacy concerns, legal accountability in AI use must be 

clearly defined. Currently, there is uncertainty about who should be held 

responsible for algorithm-based clinical decisions: the physician, the 

technology developer, or the healthcare institution? Developing regulatory 

standards that define responsibility and provide oversight is essential to 

mitigate risks and ensure patient safety. This issue becomes increasingly 

critical as intelligent systems influence diagnoses and prognoses, requiring 

continuous monitoring to prevent errors and distortions. 

Another key aspect is the management of uncertainty in statistical 

and predictive models. Although AI offers powerful analytical capabilities, its 

outputs must be interpreted with caution, as data biases may compromise model 

applicability in real-world settings. The adoption of probabilistic methodologies—

such as Bayesian approaches and Likelihood Ratios—enables ongoing 

refinement of estimates as new data are incorporated, reducing oversimplified 

interpretations and reinforcing the link between statistical analysis and medical 

decision-making. 

In addition, ensuring equitable access to and application of AI should be a 

priority in implementing these technologies in healthcare. Models trained on 

biased datasets may perpetuate disparities, as demonstrated by Obermeyer et 

al. [13], who identified critical flaws in triage algorithms based on healthcare 

expenditures that led to the underdiagnosis of Black patients. Addressing these 

biases requires continuous audits and a commitment to diversity in clinical 

datasets, ensuring that technological advances benefit the population fairly and 

effectively. 



Trends Psychiatry Psychother - Journal Article Pre-Proof (as accepted) Page 11 of 14 

 

Trends Psychiatry Psychother - Pre-Proof - http://doi.org/10.47626/2237-6089-2025-1069 

Given these challenges, ongoing training of healthcare professionals is 

essential to strengthen their critical interpretation of statistical tools and AI 

models. In addition to improving diagnostic and prognostic accuracy, the adoption 

of these new technologies must contribute to reducing inequalities and building a 

more just and accessible healthcare system. In doing so, balancing innovation 

with accountability will allow AI to reshape medical practice without compromising 

its fundamental values. 

 

Conclusion and Final Recommendations 

The advancement of medicine requires a careful balance between 

technological innovation and ethical, scientific, and humanistic principles. To 

ensure that AI contributes meaningfully to clinical practice, it is essential to 

establish clear guidelines that promote its responsible, transparent, and equitable 

implementation. Key strategies include: 

1. Curricular reform: Integrating statistical and probabilistic thinking 

into medical education is crucial to empower professionals to 

critically interpret clinical data and evidence. This foundation 

enables physicians to assess predictive models and determine 

their applicability in real-world practice. 

2. Rigorous AI validation: Standardized protocols must ensure data 

representativeness and minimize bias in predictive models, 

thereby preventing automated decisions from perpetuating 

inequalities or compromising patient safety. 

3. Transparency and regulation: Clear guidelines are necessary to 

uphold fairness and accuracy in the application of AI in 

healthcare, including mechanisms for ongoing auditing and 

algorithmic adjustments as new evidence becomes available. 

4. Adoption of probabilistic methodologies: Advanced statistical 

models should be encouraged in personalized medicine to 

support the continuous updating of clinical decisions and ensure 

better alignment with real-world patient data. 
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5. Equity in healthcare access: Technologies must be strategically 

used to reduce disparities, ensuring that medical advancements 

benefit all segments of the population in a fair and accessible 

manner. 

Improving medical education, validating algorithms rigorously, enforcing 

appropriate regulation, and promoting equitable access to technology are 

indispensable steps toward ensuring that technological progress enhances not 

only diagnostic and therapeutic precision but also fairness in healthcare delivery. 

Without these principles, the risks of bias, distortion, and inequality may 

undermine the potential benefits of AI in medicine. 

Medicine is undergoing a period of rapid transformation, and it is the 

responsibility of the scientific community, healthcare professionals, and 

policymakers to guide this progress with accountability. The true challenge lies 

not only in developing technology, but in integrating it ethically and thoughtfully 

into clinical care, ensuring that innovation serves as a tool for more precise, safe, 

and equitable decisions. 

If implemented ethically and equitably, AI has the potential to revolutionize 

medicine — making it more effective, accessible, and patient-centered. The key 

to this transformation lies in the adoption of responsible practices, continuous 

education, and the pursuit of solutions that foster a positive global health impact. 

 

Handling Editor: Dr. Ives Passos 
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